ECIR, 2023

<u>Josiane.Mothe</u> <u>@irit.fr</u>

On correlation to evaluate QPP

Josiane.Mothe@irit.

Objectives

- Open discussion on evaluation for QPP
- Question on the use of some measures that may not be appropriate to use

Evaluation of query difficulty predictors

Evaluate if a feature / a model is a good predictor

Query/Topic	Predicted difficulty	Measured difficulty
ldı	0.60	0.50
ld2	0.45	0.45
ld3	0.70	0.80
ld4	0.20	0.10
ld5	0.10	0

Two variables

are they independent?

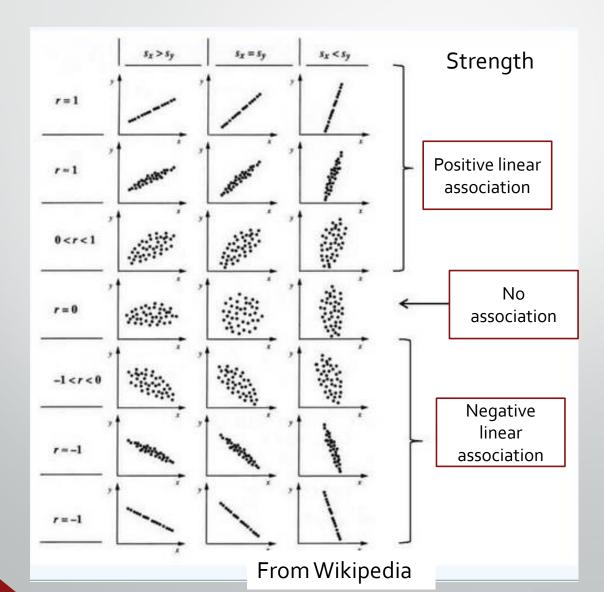
Correlation

measures the strength and direction of association between two variables

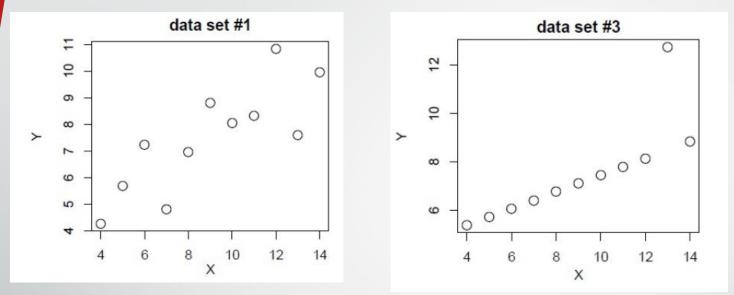
- Used to evaluate different IR tasks
 - Evaluate two ranked lists with automatic relevance judgments vs human ones
 - Evaluate users' satisfaction vs system effectiveness
 - *QPP*

Pearson

correlation coefficient between two random variables $X(x_1, x_2, ..., x_i, ..., x_N)$ and $Y(y_1, y_2, ..., y_i, ..., y_N)$ is defined as:

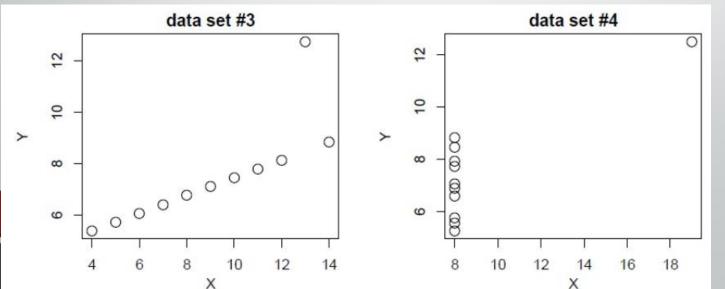

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)}.$$

Where

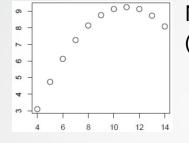

$$Cov(X,Y) = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{N - 1}$$
$$\sigma(X)^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

ECIR 2023 © Josiane.Mothe@irit.fr

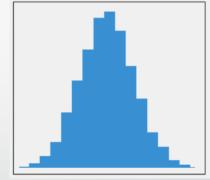
Linear correlation Bravais-Pearson



Guess the value of ρ

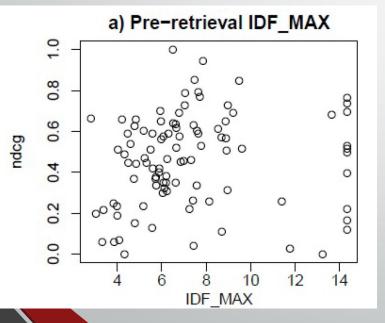

0.8164 (P-value 0.0022)

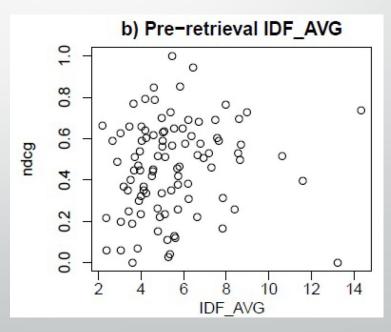
Anscombe's quarte


7

- Assumptions
 - Linear link
 - Outlier free
 - Continuous
 - Normally distributed
 - Similar spread across range

Non linear (& non monotonic)


Normal distribution



Assumptions

- Linear link
- Outlier free
- Continuous
- Normally distributed
- Similar spread across range

measure of how close the observations are to a line of best fit.

ECIR 2023 © Josiane.Mothe@irit.fr

Significance

Null hypothesis:
Ho: ρ = ο
(no statistical link between the two variables) vs.

 $H_1: \rho <> o$ There is a statistical link between the two variables

In bivariate normal data, $\rho = o$ if and only if X and Y are independent. So testing for independence is equivalent to testing $\rho = o$ in this situation.

 P-value: the null hypothesis is rejected if the p-value is less than or equal to a predefined threshold value (0.05)
 - is due to chance 5%

Correlation other than Pearson

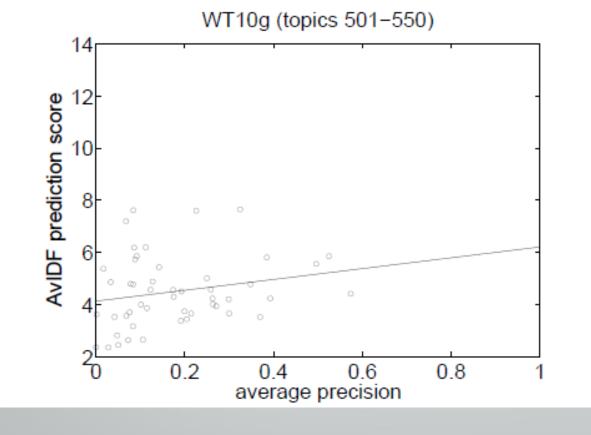
 Spearman considers ranks rather than values thus measures how far from each other variable ranks are

Query/To pic	Predicted difficulty	Measured difficulty	Predicted Rank	Measured Rank
ldı	0.60	0.50	2	2
ld2	0.45	0.45	3	3
ld3	0.70	0.80	1	1
ld4	0.20	0.10	4	4
ld5	0.10	0	5	5

$$r_s =
ho_{\mathrm{R}(X),\mathrm{R}(Y)} = rac{\mathrm{cov}(\mathrm{R}(X),\mathrm{R}(Y))}{\sigma_{\mathrm{R}(X)}\sigma_{\mathrm{R}(Y)}}$$

 H_{o} : There is no [monotonic] association between the two variables.

- Data are ordinal (numerical or categorial)
- No assumption on linearity of the link (but monotonic, can have outliers


Correlation other than Pearson

Kendall measures the correlation on ranks

= $\frac{(\text{number of concordant pairs}) - (\text{number of discordant pairs})}{n(n-1)/2}$

query difficulty predictors

Language Modeling based retrieval system, MAP = 0.18, r = 0.22

Hauff et al., 2009, ECIR

query difficulty predictors

		TREC Vol. 4+5			WT10g		GOV 2			
		$\mu 100$	$\mu 1500$	$\mu 5000$	$\mu 100$	$\mu 1500$	$\mu 5000$	$\mu 100$	$\mu 1500$	$\mu 5000$
	AvQL[6]	0.13	0.14	0.16	-0.11	-0.14	-0.12	-0.05	0.02	0.03
2	AvIDF[3]	0.52*	0.53*	0.59*	0.21*	0.18	0.18	0.37*	0.32^{*}	0.39*
E	MaxIDF[9]	0.52^{*}	0.54*	0.60*	0.31^{*}	0.30^{*}	0.30*	0.35^{*}	0.35^{*}	0.43^{*}
0	DevIDF[4]	0.22*	0.24*	0.26*	0.21*	0.25^{*}	0.27^{*}	0.14	0.20*	0.27*
5	AvICTF[4]	0.50*	0.50*	0.56*	0.20	0.16	0.16	0.34^{*}	0.30*	0.37*
E	SCS[4]	0.49*	0.49*	0.55*	0.15	0.13	0.13	0.31*	0.26*	0.34*
No.	QS[4]	0.42*	0.42^{*}	0.47*	0.09	0.05	0.05	0.26*	0.18*	0.22*
SPECIFIC	AvSCQ[11]	0.25*	0.27*	0.31*	0.32*	0.30*	0.30*	0.40*	0.36*	0.39*
00	SumSCQ[11]	-0.01	0.00	0.00	0.20*	0.18	0.15	0.23^{*}	0.23^{*}	0.19*
	MaxSCQ[11]	0.32^{*}	0.35*	0.38*	0.36*	0.41*	0.45^{*}	0.39*	0.42^{*}	0.46*
	AvQC[5]	0.45*	0.47*	0.51^{*}	0.18	0.17	0.17	0.28^{*}	0.31^{*}	0.38*
-	AvQCG[5]	0.33*	0.34*	0.37^{*}	0.00	-0.03	-0.03	0.04	0.05	0.08
AMBI	AvNP[6]	-0.20*	-0.23*	-0.26*	-0.09	-0.10	-0.10	-0.06	-0.04	-0.05
4	AvP	-0.11	-0.12	-0.14	-0.17	-0.18	-0.17	0.02	0.01	0.00
	AvPMI				0.33*	0.28*	0.26=	0.26^{*}	0.29^{*}	0.33^{*}
E.	MaxPMI			0.33^{*}	0.31*	0.27*	0.24^{*}	0.28^{*}	0.31*	0.32^{*}
REL	AvLesk[2]	0.24*	0.25*	0.27*	0.00	0.01	0.02	0.04	0.08	0.11
-	AvPath[8]	0.12	0.14	0.16	0.01	0.04	0.05	-0.02	0.03	0.07
	AvVP[7]	0.25*	0.25*	0.27*	-0.06	-0.06	-0.05	-0.01	0.09	0.13
М		0.50*	0.52^{*}	0.56^{*}	0.29^{*}	0.29*	0.30*	0.43*	0.40*	0.42^{*}
Z			0.30*	0.31*	0.31*		0.28^{*}	0.33^{*}	0.34^{*}	0.30*
Ľ	MaxVAR[11]	0.48*	0.52*	0.54*	0.36*	0.42*	0.47*	0.40*	0.43*	0.46*

Table 1: Results of the predictor evaluations given by the linear correlation coefficient.

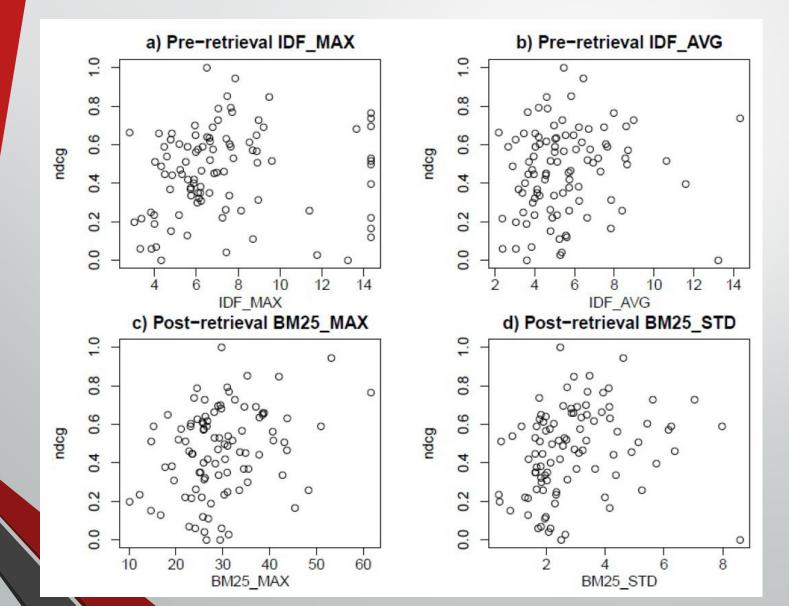

Hauff et al., 2008, CIKM

Table 3

Correlation between query features and ndcg. * marks the usual <0.05 P-Value significance

	Feature				
Measure	BM25 <u>MAX</u>	BM25_STD	IDF_MAX	IDF_AVG	
Pearson ρ	0.294*	0.232*	0.095	0.127	
P-Value	0.0034	0.0224	0.3531	0.2125	
Spearman r	0.260*	0.348*	0.236*	0.196	
P-Value	0.0100	< 0.001	0.0202	0.0544	
Kendall $ au$	0.172*	0.230*	0.159*	0.136*	
P-Value	0.0128	< 0.001	0.0215	0.0485	

		Feature				
Measure	BM25_MAX	BM25_STD	IDF_MAX	IDF_AVG		
Pearson ρ	0.294*	0.232*	0.095	0.127		
Spearman r	0.260*	0.348*	0.236*	0.196		
Kendall $ au$	0.172*	0.230*	0.159*	0.136*		
		Feature				
correlation	BM25_MAX	BM25_STD	IDF_MAX	IDF_AVG		
Removing topic 463 only						
ho	0.294*	0.339*	0.142	0.225*		
r	0.268	0.342	0.234	0.183		
au	0.181*	0.225	0.162*	0.120		

Conclusion

- Disagreement among methods be seen as a warning
- Plot the data to make sure that the calculated coefficients are meaningfull and comparable
- Outliers
- Coefficients should be used with caution when comparing different predictors

References

- F. J. Anscombe, Graphs in statistical analysis, The american statistician 27 (1973)
- D. Carmel, E. Yom-Tov, Estimating the query difficulty for information retrieval, (2010)
- C. Hauff, D. Hiemstra, F. de Jong, A survey of pre-retrieval query performance predictors (2008)
- J. Mothe, Analytics methods to understand information retrieval effectiveness—a survey (2022)
- J. Mothe, <u>On correlation to evaluate OPP</u> (ECIR, 2023)
- E Poesina, R.T. Ionescu, J. Mothe, <u>iOPP: A Benchmark for</u> <u>Image Query Performance Prediction (SIGIR, 2023)</u>