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Background—Conversational Search

A big difference between ad-hoc and conversational search [1,2]:
* self-contained query vs. context-dependent query

A popular pipeline for conversational search:
e query rewriting + ad-hoc retrieval

- What problem does blockchain solve? > Q .
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« Why do we need QPP for conversational search?
* help a conversational search system take appropriate action at the current turn [1,2]
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 Lower query rewriting quality tends to result in lower retrieval quality
 Query rewriting quality provides evidence for QPP
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Figure 1: The similarity between manual and T5-generated query rewrites in terms of ROUGE (a) and
the retrieval quality of BM25 for manual/T5-generated query rewrites in terms of NDCG@3 (b).
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Methodology

* Feed query rewrites to QPP methods designed for ad-hoc search
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Methodology

e How?
* evaluate the query rewriting quality
 perplexity

* inject the quality into the QPP

* linear interpolation
1

perplexity

* final QPP score = «a - + (1 —a) QPP score
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 Experimental settings:
* baselines: QS, SCS, avgICTF, IDF, PMI, SCQ, VAR
e retriever: TS5 query rewriter [1] + BM25

* target metric: nDCG@3
 perplexity measurer: GPT-2 XL (1.5B parameters) [2]

https://hugqgingface.co/castorini/t5-base-canard 11
https://huggingface.co/gpt2-xI



https://huggingface.co/castorini/t5-base-canard
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* Observations:
* |ower quality tends to lead to worse QPP effectiveness
* PPL-QPP improves QPP effectiveness on CAsT-19 and, in particular, CAsT-20

Methods CAsT-19 CAsT-20

P-p K-7 S-p P-p K-7 S-p
QS -0.054 -0.011 -0.017 | |0.125 0.086 0.118
SCS 0.191 0.134 0.191 | [0.173 0.102 0.140
avglCTF 0.266 0.180 0.257 | [{0.142 0.107 0.144

IDF (avg, avg, sum) 0.271  0.187 0.267 | {0.149 0.114  0.152
PMI (max, avg, max) | 0.320 0.208 0.293 | (0.136 0.113  0.155
SCQ (avg, avg, max) | 0.174 0.127 0.178 | |0.224 0.167 0.226
VAR (sum, avg, sum) | 0.321 0.221 0.310 | [0.210 0.162  0.221

PPL-QPP 0.324 0.225 0.315 | (0.231 0.191 0.256
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Conclusion and Future Work

 Contributions
 propose PPL-QPP that incorporates query rewriting quality into QPP methods.
« PPL-QPP improves QPP effectiveness if the query rewriting quality is limited.
* Future work
* incorporate query rewriting quality into post-retrieval QPP methods
* the choice of evaluator for measuring the quality of query rewrites

Code:
https://github.com/ChuanMeng/QPPA4CS



https://github.com/ChuanMeng/QPP4CS
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ABSTRACT

Query performance prediction (QPP) is a core task in information
retrieval. The QPP task is to predict the retrieval quality of a search
system for a query without relevance judgments. Research has
shown the effectiveness and usefulness of QPP for ad-hoc search,
where a retrieval system can adapt its ranking strategies according
to the predicted difficulty of a query. Recent years have witnessed
considerable progress in conversational search (CS). Effective QPP
could help a CS system to decide an appropriate action to be taken
at the next turn. Despite its potential, QPP for CS has been little
studied. We address this research gap by reproducing and studying
the effectiveness of multiple existing QPP methods in the context of
CS. While the task of passage retrieval remains the same in the two
settings, a user query in CS depends on the conversational history,
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1 INTRODUCTION

Query performance prediction (QPP) is an essential task in in-
formation retrieval (IR). It is about estimating the retrieval qual-
ity of a search system for a given query without relevance judg-
ments [13, 15, 21, 25, 52, 55]. QPP has been long studied in the
IR community [9]. Numerous benefits of QPP have been identi-
fied, including selecting the most effective ranking algorithm for a
query [25, 26, 52] based on the difficulty of the input query.

In conversational search (CS) there has been significant pro-
gresson multiple subtasks [54], including passage retrieval [12, 51],
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